Variable | Description |
---|---|
fips | A 5 digit code that identifies each county |
county | County name |
state | State abbreviation |
year | Corresponding year for data |
number_pills | The number of Oxycodone & Hydrocodone pills purchased by pharmacies in the county |
population | The total number of people living in the county |
Apply and Practice Activity
ARCOS: Learn to use the gt package to create a table of CO opioid data
Introduction
For this activity you will work with the WAPO compiled data repository on opioid pills that you studied in the Module 4 Handout on Data Wrangling. We will work with the county level data for Colorado. Each county in the US has up to nine rows of data in this data frame, one for each year from 2006 to 2014. The table below describes the variables that we will utilize:
Step by step directions
Step 1
Let’s get started. Navigate to the Posit Cloud and enter the foundations project.
Navigate to the apply_and_practice folder in the programs folder of the foundations project. Open up the file called arcos_table.qmd.
To ensure you are working in a fresh session, close any other open tabs (save them if needed). Click the down arrow beside the Run button toward the top of your screen then click Restart R and Clear Output.
Once the .qmd file is open, add your name to the author section of the YAML metadata.
Step 2
First we need to load the packages that are needed for this activity. There are two new packages that we will explore here: gt and gtExtras. These two packages allow us to create useful, flexible and beautiful tables of data in R.
Find the code chunk labeled: Load packages in the .qmd file. Then load these packages:
library(gt)
library(gtExtras)
library(here)
library(tidyverse)
Once entered, click run on the Load packages code chunk. Now, the packages are ready for you to use.
Step 3
Under the first level header
# Import data
Import the opioid counties data frame that we worked with in Module 4 (it’s in the data folder of the course project — and called opioid_counties.Rds). Call the data frame co, and filter it to include only data for CO. You should have 526 observations once filtered.
Step 4
Under the first level header
# Prepare the data
Create a new version of the co data frame, call it co_wide. In a pipe do the following:
Create a variable called pills_per_capita which is calculated as the number of pills divided by the population size.
Select the variables fips, county, year, and pills_per_capita.
Pivot the data from long to wide using the pivot_wider() function. Use the names prefix: “pills_per_capita_in_”. Your resulting data frame should have one row of data for each of the 61 counties in CO, and 10 variables (the county name and 9 variables to represent pills per capita (one for each year from 2006-2014).
Step 5
Under the first level header
# Create a table for CO counties
Create a basic table. Copy and paste the code below to do so, and run the code chunk to view the result.
|>
co_wide gt()
fips | county | pills_per_capita_in_2006 | pills_per_capita_in_2007 | pills_per_capita_in_2008 | pills_per_capita_in_2009 | pills_per_capita_in_2010 | pills_per_capita_in_2011 | pills_per_capita_in_2012 | pills_per_capita_in_2013 | pills_per_capita_in_2014 |
---|---|---|---|---|---|---|---|---|---|---|
08001 | ADAMS | 19.17808522 | 20.88308727 | 23.41608988 | 26.42413319 | 28.71118896 | 31.031304 | 30.8073527 | 26.8825742 | 27.87428666 |
08003 | ALAMOSA | 63.62595420 | 72.38932806 | 78.98169935 | 89.79026900 | 90.33871706 | 105.703150 | 115.2546032 | 100.2177870 | 80.22220843 |
08005 | ARAPAHOE | 20.47032367 | 22.84911602 | 24.56720565 | 26.93638417 | 27.58157942 | 28.954789 | 29.0301676 | 27.2742490 | 27.22745205 |
08007 | ARCHULETA | 13.49585323 | 14.89969010 | 15.47755102 | 18.37218814 | 18.41793013 | 19.404213 | 22.1322983 | 23.9739037 | 25.44510386 |
08009 | BACA | 17.64556318 | 20.56389033 | 20.31003678 | 16.84429426 | 21.34098617 | 26.845285 | 21.6494845 | 23.1161925 | 27.28246319 |
08011 | BENT | 14.20492349 | 19.02012248 | 22.92854747 | 23.64556136 | 27.78122449 | 35.772226 | 37.5484496 | 30.1253867 | 28.51666667 |
08013 | BOULDER | 20.70401030 | 23.41570759 | 25.72198213 | 25.36802426 | 27.73863538 | 28.371549 | 27.4387285 | 25.2613661 | 23.28868550 |
08014 | BROOMFIELD | 23.89505223 | 26.48837480 | 27.70162276 | 36.74028970 | 43.95105160 | 60.444754 | 64.2026005 | 61.8177048 | 56.16345062 |
08015 | CHAFFEE | 36.25563294 | 38.26091961 | 42.99550447 | 45.43094250 | 48.09407070 | 53.699102 | 54.5953353 | 50.2148037 | 47.68335081 |
08017 | CHEYENNE | 15.05753138 | 16.36070853 | 20.25518341 | 25.89395808 | 28.44120328 | 25.233645 | 24.8353222 | 25.1256281 | 29.59591268 |
08019 | CLEAR CREEK | 17.98274718 | 23.35008741 | 24.23943970 | 26.15349989 | 29.46742958 | 28.551139 | 18.3165912 | 14.9535809 | 14.85626509 |
08021 | CONEJOS | 33.27277132 | 34.54423756 | 31.91463415 | 31.08091260 | 30.91240876 | 35.452115 | 42.7812159 | 41.1700581 | 27.98453359 |
08025 | CROWLEY | 24.75365274 | 26.81629260 | 27.25744073 | 27.34907305 | 35.42479227 | 35.356290 | 37.0280146 | 35.6368804 | 30.46059734 |
08027 | CUSTER | 0.22533801 | 0.24319066 | NA | 0.05558644 | 0.12823801 | 0.259538 | 0.2614068 | 0.4475854 | 0.17313992 |
08029 | DELTA | 35.97368156 | 42.91690183 | 50.05730659 | 49.57104734 | 45.99941047 | 48.748451 | 49.1383914 | 42.4142992 | 43.58614787 |
08031 | DENVER | 13.89459593 | 16.03725759 | 17.33534125 | 18.99888745 | 20.69347693 | 22.279617 | 22.6510418 | 20.5489499 | 19.45092675 |
08035 | DOUGLAS | 16.15717822 | 18.15362101 | 19.25473684 | 21.46338295 | 22.03324312 | 22.545618 | 23.1072598 | 21.4243688 | 20.17853926 |
08037 | EAGLE | 20.43225514 | 22.14390699 | 24.38702031 | 27.10149366 | 28.62362924 | 29.050353 | 30.5237030 | 27.7631110 | 27.95742155 |
08041 | EL PASO | 22.63232980 | 25.46928251 | 27.53450885 | 30.67860468 | 32.08055828 | 34.539237 | 34.9975803 | 32.8719797 | 32.61158699 |
08039 | ELBERT | 8.58047540 | 9.55718239 | 9.61385526 | 10.91898534 | 14.83488905 | 16.069382 | 16.6016133 | 15.5741575 | 17.09067743 |
08043 | FREMONT | 30.65090777 | 34.84017973 | 42.49671373 | 44.76019665 | 43.46520100 | 48.190901 | 49.1477684 | 45.6326574 | 42.73491329 |
08045 | GARFIELD | 29.08361437 | 34.01767101 | 35.03796281 | 36.41764061 | 35.79350268 | 37.177805 | 36.2675306 | 32.1579904 | 32.13711100 |
08047 | GILPIN | 6.77657178 | 6.98957695 | 4.49661759 | 6.81862082 | 8.21303160 | 15.073459 | 11.5154909 | 4.1446047 | 1.69156019 |
08049 | GRAND | 18.48989502 | 19.98182581 | 41.05731090 | 26.20369004 | 24.46647391 | 25.755091 | 26.4717963 | 24.0454076 | 20.87995579 |
08051 | GUNNISON | 15.29755435 | 15.98916440 | 18.13573770 | 20.43487001 | 21.63385307 | 22.928506 | 23.9792005 | 21.7862006 | 19.92904599 |
08053 | HINSDALE | 0.49079755 | 0.81437126 | 1.80929095 | 3.06859206 | 2.65848671 | 1.778386 | 0.8860759 | 0.8652658 | 1.14810563 |
08055 | HUERFANO | 41.61638838 | 37.90242519 | 44.23158490 | 45.80578245 | 55.91537133 | 64.387172 | 64.4041605 | 56.9056604 | 43.11603053 |
08059 | JEFFERSON | 30.76396594 | 34.91007047 | 37.59499474 | 38.67976750 | 40.01293571 | 42.599065 | 44.1925778 | 41.0469992 | 39.48797243 |
08061 | KIOWA | 23.21428571 | 33.75886525 | 39.58333333 | 37.16545012 | 40.17041996 | 42.245370 | 44.7954056 | 47.6458187 | 53.09168443 |
08063 | KIT CARSON | 12.84483835 | 14.98617048 | 16.97928160 | 18.55797820 | 17.94997548 | 16.434336 | 18.6358100 | 17.2182196 | 16.79389313 |
08067 | LA PLATA | 23.62794911 | 25.44685163 | 24.30703307 | 25.11524216 | 25.36919978 | 27.487997 | 28.6858270 | 26.0099156 | 25.40449502 |
08065 | LAKE | 23.12448475 | 24.02597403 | 23.34228188 | 24.18691589 | 30.71459014 | 41.069900 | 36.9370591 | 30.6737589 | 27.19190261 |
08069 | LARIMER | 24.67531963 | 27.73466335 | 29.76008915 | 31.42446459 | 33.41167460 | 36.079053 | 36.1891515 | 33.9584628 | 33.59840737 |
08071 | LAS ANIMAS | 54.16321062 | 37.91979153 | 43.95053900 | 45.56089541 | 50.09250399 | 51.351855 | 55.9610010 | 62.4207188 | 73.82040706 |
08073 | LINCOLN | 27.73960217 | 32.18453683 | 39.59400146 | 45.37369915 | 50.45653762 | 45.386305 | 46.6103252 | 48.5667034 | 38.86854632 |
08075 | LOGAN | 26.69891835 | 29.09127826 | 28.64741504 | 34.29998080 | 31.89693868 | 32.007405 | 36.2007009 | 34.4782589 | 36.27278358 |
08077 | MESA | 30.79116326 | 35.28703186 | 37.01428522 | 38.89598851 | 38.09774817 | 40.743027 | 43.4102632 | 39.2495523 | 38.13746958 |
08079 | MINERAL | NA | NA | NA | NA | 0.09803922 | NA | NA | NA | NA |
08081 | MOFFAT | 26.19138391 | 30.27344921 | 33.17114464 | 42.70158613 | 49.04208891 | 55.820698 | 53.6532074 | 44.9245185 | 45.18590998 |
08083 | MONTEZUMA | 30.95962832 | 34.72592121 | 39.47149314 | 39.90800000 | 42.99220697 | 45.026013 | 47.1306639 | 43.4336783 | 45.13277797 |
08085 | MONTROSE | 22.89352698 | 28.85337635 | 30.87313690 | 35.16092919 | 35.85431878 | 39.937028 | 40.4571401 | 39.3400780 | 38.41506665 |
08087 | MORGAN | 21.50776531 | 23.91421878 | 26.87628605 | 29.85740138 | 33.23886640 | 37.361414 | 37.6297872 | 35.5305921 | 35.73071766 |
08089 | OTERO | 42.49343556 | 48.68263856 | 56.30118552 | 63.80650985 | 76.81359533 | 87.562118 | 92.6102922 | 68.9429771 | 59.28548525 |
08091 | OURAY | 23.61858191 | 19.78823529 | 21.22587968 | 22.79265324 | 25.27436907 | 29.718600 | 30.7716535 | 31.1284916 | 26.13195057 |
08093 | PARK | 6.35243376 | 5.98966251 | 6.88666585 | 6.49273290 | 8.23529412 | 8.598315 | 8.3003464 | 7.1136321 | 3.99344627 |
08095 | PHILLIPS | 12.48300861 | 10.09593422 | 10.46217521 | 10.80598348 | 13.65498407 | 20.951947 | 18.9497717 | 27.1047228 | 22.74344356 |
08097 | PITKIN | 15.33797730 | 14.32597698 | 13.89631700 | 15.65103827 | 13.11611447 | 13.447244 | 13.2641176 | 13.1730041 | 12.85268451 |
08099 | PROWERS | 30.09900990 | 35.50251256 | 37.28974177 | 42.76086627 | 47.24359981 | 49.782006 | 54.9445729 | 45.8935300 | 44.12169269 |
08101 | PUEBLO | 45.35013748 | 52.45389083 | 59.88459183 | 69.31131106 | 74.61496121 | 86.142954 | 89.8095831 | 72.9599870 | 66.80010824 |
08103 | RIO BLANCO | 22.34455959 | 18.99105602 | 19.24256363 | 10.57738962 | 20.37265168 | 26.254534 | 31.3168847 | 30.3988183 | 19.83973883 |
08105 | RIO GRANDE | 24.56494640 | 19.36382045 | 22.59106239 | 26.98288342 | 29.80379004 | 35.322757 | 47.3526205 | 46.6633090 | 45.52533784 |
08107 | ROUTT | 27.34068347 | 28.74038504 | 27.47784742 | 28.98935409 | 29.88793404 | 30.084996 | 28.7385076 | 27.1352898 | 25.50153662 |
08109 | SAGUACHE | 0.09641652 | 0.01626545 | 0.01618385 | 0.24534565 | 0.09738679 | 0.081103 | 0.1131039 | 0.2903226 | 0.06440187 |
08111 | SAN JUAN | 0.12326656 | NA | NA | NA | NA | NA | NA | NA | NA |
08113 | SAN MIGUEL | 9.51774855 | 9.80606392 | 10.26337225 | 9.97968856 | 11.79613646 | 10.998239 | 10.7508073 | 10.6243330 | 10.18296696 |
08115 | SEDGWICK | 24.29264349 | 26.83333333 | 31.14415531 | 32.84272498 | 37.28441128 | 53.179916 | 60.4730013 | 50.0420875 | 41.73361522 |
08117 | SUMMIT | 23.46035589 | 26.62143367 | 25.74049514 | 27.25615332 | 26.78823095 | 28.081721 | 27.9180629 | 24.5689011 | 24.16965101 |
08119 | TELLER | 26.69090256 | 30.80107456 | 38.12101210 | 46.34337014 | 50.30629683 | 60.905578 | 69.0294867 | 61.3876955 | 58.44711724 |
08121 | WASHINGTON | 8.92602405 | 8.17120623 | 8.45158598 | NA | NA | NA | NA | NA | NA |
08123 | WELD | 21.57509872 | 23.75780422 | 26.62625595 | 29.61587092 | 32.20172116 | 35.521110 | 36.1798369 | 33.0527475 | 30.55042895 |
08125 | YUMA | 16.14881439 | 18.51246424 | 20.82698364 | 23.55347871 | 22.51414713 | 26.421687 | 27.5618022 | 30.0208065 | 30.70378048 |
The function gt() converts the data frame into a gt table object. This creates the general structure of the table — but it’s not particularly well-formatted. Let’s take a few steps to enhance it.
Step 6
We will create a spanning column that indicates that the 9 rows of per capita data refer to Pills per Capita for years 2006-2014. We’ll also provide informative labels for the columns rather than relying on the variable names, add a title, and add a theme.
Here’s a full explanation of the additional code:
Adding a Column Spanner (
tab_spanner
):tab_spanner(label = "Opioid Pills Per Capita from 2006-2014", columns = starts_with("pills_per_capita_in_"))
: This code adds a spanner (a label that spans multiple columns) to the table.label
: This sets the text for the spanner, which is “Opioid Pills Per Capita from 2006-2014”.columns
: This specifies which columns the spanner should cover. Thestarts_with("pills_per_capita_in_")
selects all columns that start with the string “pills_per_capita_in_”, which corresponds to the columns for each year from 2006 to 2014.
Renaming Columns (
cols_label
):cols_label(...)
: This code is used to rename the columns in the table for better readability.county = "County"
: Renames thecounty
column to “County”.pills_per_capita_in_2006 = "2006"
: Renames thepills_per_capita_in_2006
column to “2006”. And, the same treatment is applied to the other years.
Add a title and subtitle:
- The
tab_header()
function is used to add a title and subtitle to the table.
- The
Add a theme:
- The gtExtra package has several built in themes. You can check them out here. To demonstrate, here we apply the FiveThirtyEight theme via the function gt_theme_538().
Update your code in the # Create a table for CO counties
code chunk with the code below, and then run the code chunk to view the results.
|>
co_wide select(county, starts_with("pills_per_capita_in")) |>
gt() |>
tab_spanner(
label = "Opioid Pills Per Capita from 2006-2014",
columns = starts_with("pills_per_capita_in_")
|>
) cols_label(
county = "County",
pills_per_capita_in_2006 = "2006",
pills_per_capita_in_2007 = "2007",
pills_per_capita_in_2008 = "2008",
pills_per_capita_in_2009 = "2009",
pills_per_capita_in_2010 = "2010",
pills_per_capita_in_2011 = "2011",
pills_per_capita_in_2012 = "2012",
pills_per_capita_in_2013 = "2013",
pills_per_capita_in_2014 = "2014"
|>
) tab_header(
title = "How deeply did Opioid pills flood Colorado counties",
subtitle = "Data from the Washington Post (https://wpinvestigative.github.io/arcos/)"
|>
) gt_theme_538()
How deeply did Opioid pills flood Colorado counties | |||||||||
---|---|---|---|---|---|---|---|---|---|
Data from the Washington Post (https://wpinvestigative.github.io/arcos/) | |||||||||
County |
Opioid Pills Per Capita from 2006-2014
|
||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
ADAMS | 19.17808522 | 20.88308727 | 23.41608988 | 26.42413319 | 28.71118896 | 31.031304 | 30.8073527 | 26.8825742 | 27.87428666 |
ALAMOSA | 63.62595420 | 72.38932806 | 78.98169935 | 89.79026900 | 90.33871706 | 105.703150 | 115.2546032 | 100.2177870 | 80.22220843 |
ARAPAHOE | 20.47032367 | 22.84911602 | 24.56720565 | 26.93638417 | 27.58157942 | 28.954789 | 29.0301676 | 27.2742490 | 27.22745205 |
ARCHULETA | 13.49585323 | 14.89969010 | 15.47755102 | 18.37218814 | 18.41793013 | 19.404213 | 22.1322983 | 23.9739037 | 25.44510386 |
BACA | 17.64556318 | 20.56389033 | 20.31003678 | 16.84429426 | 21.34098617 | 26.845285 | 21.6494845 | 23.1161925 | 27.28246319 |
BENT | 14.20492349 | 19.02012248 | 22.92854747 | 23.64556136 | 27.78122449 | 35.772226 | 37.5484496 | 30.1253867 | 28.51666667 |
BOULDER | 20.70401030 | 23.41570759 | 25.72198213 | 25.36802426 | 27.73863538 | 28.371549 | 27.4387285 | 25.2613661 | 23.28868550 |
BROOMFIELD | 23.89505223 | 26.48837480 | 27.70162276 | 36.74028970 | 43.95105160 | 60.444754 | 64.2026005 | 61.8177048 | 56.16345062 |
CHAFFEE | 36.25563294 | 38.26091961 | 42.99550447 | 45.43094250 | 48.09407070 | 53.699102 | 54.5953353 | 50.2148037 | 47.68335081 |
CHEYENNE | 15.05753138 | 16.36070853 | 20.25518341 | 25.89395808 | 28.44120328 | 25.233645 | 24.8353222 | 25.1256281 | 29.59591268 |
CLEAR CREEK | 17.98274718 | 23.35008741 | 24.23943970 | 26.15349989 | 29.46742958 | 28.551139 | 18.3165912 | 14.9535809 | 14.85626509 |
CONEJOS | 33.27277132 | 34.54423756 | 31.91463415 | 31.08091260 | 30.91240876 | 35.452115 | 42.7812159 | 41.1700581 | 27.98453359 |
CROWLEY | 24.75365274 | 26.81629260 | 27.25744073 | 27.34907305 | 35.42479227 | 35.356290 | 37.0280146 | 35.6368804 | 30.46059734 |
CUSTER | 0.22533801 | 0.24319066 | NA | 0.05558644 | 0.12823801 | 0.259538 | 0.2614068 | 0.4475854 | 0.17313992 |
DELTA | 35.97368156 | 42.91690183 | 50.05730659 | 49.57104734 | 45.99941047 | 48.748451 | 49.1383914 | 42.4142992 | 43.58614787 |
DENVER | 13.89459593 | 16.03725759 | 17.33534125 | 18.99888745 | 20.69347693 | 22.279617 | 22.6510418 | 20.5489499 | 19.45092675 |
DOUGLAS | 16.15717822 | 18.15362101 | 19.25473684 | 21.46338295 | 22.03324312 | 22.545618 | 23.1072598 | 21.4243688 | 20.17853926 |
EAGLE | 20.43225514 | 22.14390699 | 24.38702031 | 27.10149366 | 28.62362924 | 29.050353 | 30.5237030 | 27.7631110 | 27.95742155 |
EL PASO | 22.63232980 | 25.46928251 | 27.53450885 | 30.67860468 | 32.08055828 | 34.539237 | 34.9975803 | 32.8719797 | 32.61158699 |
ELBERT | 8.58047540 | 9.55718239 | 9.61385526 | 10.91898534 | 14.83488905 | 16.069382 | 16.6016133 | 15.5741575 | 17.09067743 |
FREMONT | 30.65090777 | 34.84017973 | 42.49671373 | 44.76019665 | 43.46520100 | 48.190901 | 49.1477684 | 45.6326574 | 42.73491329 |
GARFIELD | 29.08361437 | 34.01767101 | 35.03796281 | 36.41764061 | 35.79350268 | 37.177805 | 36.2675306 | 32.1579904 | 32.13711100 |
GILPIN | 6.77657178 | 6.98957695 | 4.49661759 | 6.81862082 | 8.21303160 | 15.073459 | 11.5154909 | 4.1446047 | 1.69156019 |
GRAND | 18.48989502 | 19.98182581 | 41.05731090 | 26.20369004 | 24.46647391 | 25.755091 | 26.4717963 | 24.0454076 | 20.87995579 |
GUNNISON | 15.29755435 | 15.98916440 | 18.13573770 | 20.43487001 | 21.63385307 | 22.928506 | 23.9792005 | 21.7862006 | 19.92904599 |
HINSDALE | 0.49079755 | 0.81437126 | 1.80929095 | 3.06859206 | 2.65848671 | 1.778386 | 0.8860759 | 0.8652658 | 1.14810563 |
HUERFANO | 41.61638838 | 37.90242519 | 44.23158490 | 45.80578245 | 55.91537133 | 64.387172 | 64.4041605 | 56.9056604 | 43.11603053 |
JEFFERSON | 30.76396594 | 34.91007047 | 37.59499474 | 38.67976750 | 40.01293571 | 42.599065 | 44.1925778 | 41.0469992 | 39.48797243 |
KIOWA | 23.21428571 | 33.75886525 | 39.58333333 | 37.16545012 | 40.17041996 | 42.245370 | 44.7954056 | 47.6458187 | 53.09168443 |
KIT CARSON | 12.84483835 | 14.98617048 | 16.97928160 | 18.55797820 | 17.94997548 | 16.434336 | 18.6358100 | 17.2182196 | 16.79389313 |
LA PLATA | 23.62794911 | 25.44685163 | 24.30703307 | 25.11524216 | 25.36919978 | 27.487997 | 28.6858270 | 26.0099156 | 25.40449502 |
LAKE | 23.12448475 | 24.02597403 | 23.34228188 | 24.18691589 | 30.71459014 | 41.069900 | 36.9370591 | 30.6737589 | 27.19190261 |
LARIMER | 24.67531963 | 27.73466335 | 29.76008915 | 31.42446459 | 33.41167460 | 36.079053 | 36.1891515 | 33.9584628 | 33.59840737 |
LAS ANIMAS | 54.16321062 | 37.91979153 | 43.95053900 | 45.56089541 | 50.09250399 | 51.351855 | 55.9610010 | 62.4207188 | 73.82040706 |
LINCOLN | 27.73960217 | 32.18453683 | 39.59400146 | 45.37369915 | 50.45653762 | 45.386305 | 46.6103252 | 48.5667034 | 38.86854632 |
LOGAN | 26.69891835 | 29.09127826 | 28.64741504 | 34.29998080 | 31.89693868 | 32.007405 | 36.2007009 | 34.4782589 | 36.27278358 |
MESA | 30.79116326 | 35.28703186 | 37.01428522 | 38.89598851 | 38.09774817 | 40.743027 | 43.4102632 | 39.2495523 | 38.13746958 |
MINERAL | NA | NA | NA | NA | 0.09803922 | NA | NA | NA | NA |
MOFFAT | 26.19138391 | 30.27344921 | 33.17114464 | 42.70158613 | 49.04208891 | 55.820698 | 53.6532074 | 44.9245185 | 45.18590998 |
MONTEZUMA | 30.95962832 | 34.72592121 | 39.47149314 | 39.90800000 | 42.99220697 | 45.026013 | 47.1306639 | 43.4336783 | 45.13277797 |
MONTROSE | 22.89352698 | 28.85337635 | 30.87313690 | 35.16092919 | 35.85431878 | 39.937028 | 40.4571401 | 39.3400780 | 38.41506665 |
MORGAN | 21.50776531 | 23.91421878 | 26.87628605 | 29.85740138 | 33.23886640 | 37.361414 | 37.6297872 | 35.5305921 | 35.73071766 |
OTERO | 42.49343556 | 48.68263856 | 56.30118552 | 63.80650985 | 76.81359533 | 87.562118 | 92.6102922 | 68.9429771 | 59.28548525 |
OURAY | 23.61858191 | 19.78823529 | 21.22587968 | 22.79265324 | 25.27436907 | 29.718600 | 30.7716535 | 31.1284916 | 26.13195057 |
PARK | 6.35243376 | 5.98966251 | 6.88666585 | 6.49273290 | 8.23529412 | 8.598315 | 8.3003464 | 7.1136321 | 3.99344627 |
PHILLIPS | 12.48300861 | 10.09593422 | 10.46217521 | 10.80598348 | 13.65498407 | 20.951947 | 18.9497717 | 27.1047228 | 22.74344356 |
PITKIN | 15.33797730 | 14.32597698 | 13.89631700 | 15.65103827 | 13.11611447 | 13.447244 | 13.2641176 | 13.1730041 | 12.85268451 |
PROWERS | 30.09900990 | 35.50251256 | 37.28974177 | 42.76086627 | 47.24359981 | 49.782006 | 54.9445729 | 45.8935300 | 44.12169269 |
PUEBLO | 45.35013748 | 52.45389083 | 59.88459183 | 69.31131106 | 74.61496121 | 86.142954 | 89.8095831 | 72.9599870 | 66.80010824 |
RIO BLANCO | 22.34455959 | 18.99105602 | 19.24256363 | 10.57738962 | 20.37265168 | 26.254534 | 31.3168847 | 30.3988183 | 19.83973883 |
RIO GRANDE | 24.56494640 | 19.36382045 | 22.59106239 | 26.98288342 | 29.80379004 | 35.322757 | 47.3526205 | 46.6633090 | 45.52533784 |
ROUTT | 27.34068347 | 28.74038504 | 27.47784742 | 28.98935409 | 29.88793404 | 30.084996 | 28.7385076 | 27.1352898 | 25.50153662 |
SAGUACHE | 0.09641652 | 0.01626545 | 0.01618385 | 0.24534565 | 0.09738679 | 0.081103 | 0.1131039 | 0.2903226 | 0.06440187 |
SAN JUAN | 0.12326656 | NA | NA | NA | NA | NA | NA | NA | NA |
SAN MIGUEL | 9.51774855 | 9.80606392 | 10.26337225 | 9.97968856 | 11.79613646 | 10.998239 | 10.7508073 | 10.6243330 | 10.18296696 |
SEDGWICK | 24.29264349 | 26.83333333 | 31.14415531 | 32.84272498 | 37.28441128 | 53.179916 | 60.4730013 | 50.0420875 | 41.73361522 |
SUMMIT | 23.46035589 | 26.62143367 | 25.74049514 | 27.25615332 | 26.78823095 | 28.081721 | 27.9180629 | 24.5689011 | 24.16965101 |
TELLER | 26.69090256 | 30.80107456 | 38.12101210 | 46.34337014 | 50.30629683 | 60.905578 | 69.0294867 | 61.3876955 | 58.44711724 |
WASHINGTON | 8.92602405 | 8.17120623 | 8.45158598 | NA | NA | NA | NA | NA | NA |
WELD | 21.57509872 | 23.75780422 | 26.62625595 | 29.61587092 | 32.20172116 | 35.521110 | 36.1798369 | 33.0527475 | 30.55042895 |
YUMA | 16.14881439 | 18.51246424 | 20.82698364 | 23.55347871 | 22.51414713 | 26.421687 | 27.5618022 | 30.0208065 | 30.70378048 |
Step 7
Notice that the values for pills per capita have too many decimal places displayed. Displaying one decimal place is sufficient for clarity and readability. Let’s update our code to format these values to show only one digit after the decimal.
Copy and paste this updated code in the code chunk under # Create a table for CO counties
, which uses the fmt_number() function from gt to format numbers in a table. The arguments to the function are simply the columns that we want to affect, and the number of decimal places desired for the printing of the number.
Study the output, and then write a few sentences to describe what you see and your thoughts.
|>
co_wide select(county, starts_with("pills_per_capita_in")) |>
gt() |>
tab_spanner(
label = "Opioid Pills Per Capita from 2006-2014",
columns = starts_with("pills_per_capita_in_")
|>
) cols_label(
county = "County",
pills_per_capita_in_2006 = "2006",
pills_per_capita_in_2007 = "2007",
pills_per_capita_in_2008 = "2008",
pills_per_capita_in_2009 = "2009",
pills_per_capita_in_2010 = "2010",
pills_per_capita_in_2011 = "2011",
pills_per_capita_in_2012 = "2012",
pills_per_capita_in_2013 = "2013",
pills_per_capita_in_2014 = "2014"
|>
) tab_header(
title = "How deeply did Opioid pills flood Colorado counties",
subtitle = "Data from the Washington Post (https://wpinvestigative.github.io/arcos/)"
|>
) gt_theme_538() |>
fmt_number(
columns = starts_with("pills_per_capita_in_"),
decimals = 1)
How deeply did Opioid pills flood Colorado counties | |||||||||
---|---|---|---|---|---|---|---|---|---|
Data from the Washington Post (https://wpinvestigative.github.io/arcos/) | |||||||||
County |
Opioid Pills Per Capita from 2006-2014
|
||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
ADAMS | 19.2 | 20.9 | 23.4 | 26.4 | 28.7 | 31.0 | 30.8 | 26.9 | 27.9 |
ALAMOSA | 63.6 | 72.4 | 79.0 | 89.8 | 90.3 | 105.7 | 115.3 | 100.2 | 80.2 |
ARAPAHOE | 20.5 | 22.8 | 24.6 | 26.9 | 27.6 | 29.0 | 29.0 | 27.3 | 27.2 |
ARCHULETA | 13.5 | 14.9 | 15.5 | 18.4 | 18.4 | 19.4 | 22.1 | 24.0 | 25.4 |
BACA | 17.6 | 20.6 | 20.3 | 16.8 | 21.3 | 26.8 | 21.6 | 23.1 | 27.3 |
BENT | 14.2 | 19.0 | 22.9 | 23.6 | 27.8 | 35.8 | 37.5 | 30.1 | 28.5 |
BOULDER | 20.7 | 23.4 | 25.7 | 25.4 | 27.7 | 28.4 | 27.4 | 25.3 | 23.3 |
BROOMFIELD | 23.9 | 26.5 | 27.7 | 36.7 | 44.0 | 60.4 | 64.2 | 61.8 | 56.2 |
CHAFFEE | 36.3 | 38.3 | 43.0 | 45.4 | 48.1 | 53.7 | 54.6 | 50.2 | 47.7 |
CHEYENNE | 15.1 | 16.4 | 20.3 | 25.9 | 28.4 | 25.2 | 24.8 | 25.1 | 29.6 |
CLEAR CREEK | 18.0 | 23.4 | 24.2 | 26.2 | 29.5 | 28.6 | 18.3 | 15.0 | 14.9 |
CONEJOS | 33.3 | 34.5 | 31.9 | 31.1 | 30.9 | 35.5 | 42.8 | 41.2 | 28.0 |
CROWLEY | 24.8 | 26.8 | 27.3 | 27.3 | 35.4 | 35.4 | 37.0 | 35.6 | 30.5 |
CUSTER | 0.2 | 0.2 | NA | 0.1 | 0.1 | 0.3 | 0.3 | 0.4 | 0.2 |
DELTA | 36.0 | 42.9 | 50.1 | 49.6 | 46.0 | 48.7 | 49.1 | 42.4 | 43.6 |
DENVER | 13.9 | 16.0 | 17.3 | 19.0 | 20.7 | 22.3 | 22.7 | 20.5 | 19.5 |
DOUGLAS | 16.2 | 18.2 | 19.3 | 21.5 | 22.0 | 22.5 | 23.1 | 21.4 | 20.2 |
EAGLE | 20.4 | 22.1 | 24.4 | 27.1 | 28.6 | 29.1 | 30.5 | 27.8 | 28.0 |
EL PASO | 22.6 | 25.5 | 27.5 | 30.7 | 32.1 | 34.5 | 35.0 | 32.9 | 32.6 |
ELBERT | 8.6 | 9.6 | 9.6 | 10.9 | 14.8 | 16.1 | 16.6 | 15.6 | 17.1 |
FREMONT | 30.7 | 34.8 | 42.5 | 44.8 | 43.5 | 48.2 | 49.1 | 45.6 | 42.7 |
GARFIELD | 29.1 | 34.0 | 35.0 | 36.4 | 35.8 | 37.2 | 36.3 | 32.2 | 32.1 |
GILPIN | 6.8 | 7.0 | 4.5 | 6.8 | 8.2 | 15.1 | 11.5 | 4.1 | 1.7 |
GRAND | 18.5 | 20.0 | 41.1 | 26.2 | 24.5 | 25.8 | 26.5 | 24.0 | 20.9 |
GUNNISON | 15.3 | 16.0 | 18.1 | 20.4 | 21.6 | 22.9 | 24.0 | 21.8 | 19.9 |
HINSDALE | 0.5 | 0.8 | 1.8 | 3.1 | 2.7 | 1.8 | 0.9 | 0.9 | 1.1 |
HUERFANO | 41.6 | 37.9 | 44.2 | 45.8 | 55.9 | 64.4 | 64.4 | 56.9 | 43.1 |
JEFFERSON | 30.8 | 34.9 | 37.6 | 38.7 | 40.0 | 42.6 | 44.2 | 41.0 | 39.5 |
KIOWA | 23.2 | 33.8 | 39.6 | 37.2 | 40.2 | 42.2 | 44.8 | 47.6 | 53.1 |
KIT CARSON | 12.8 | 15.0 | 17.0 | 18.6 | 17.9 | 16.4 | 18.6 | 17.2 | 16.8 |
LA PLATA | 23.6 | 25.4 | 24.3 | 25.1 | 25.4 | 27.5 | 28.7 | 26.0 | 25.4 |
LAKE | 23.1 | 24.0 | 23.3 | 24.2 | 30.7 | 41.1 | 36.9 | 30.7 | 27.2 |
LARIMER | 24.7 | 27.7 | 29.8 | 31.4 | 33.4 | 36.1 | 36.2 | 34.0 | 33.6 |
LAS ANIMAS | 54.2 | 37.9 | 44.0 | 45.6 | 50.1 | 51.4 | 56.0 | 62.4 | 73.8 |
LINCOLN | 27.7 | 32.2 | 39.6 | 45.4 | 50.5 | 45.4 | 46.6 | 48.6 | 38.9 |
LOGAN | 26.7 | 29.1 | 28.6 | 34.3 | 31.9 | 32.0 | 36.2 | 34.5 | 36.3 |
MESA | 30.8 | 35.3 | 37.0 | 38.9 | 38.1 | 40.7 | 43.4 | 39.2 | 38.1 |
MINERAL | NA | NA | NA | NA | 0.1 | NA | NA | NA | NA |
MOFFAT | 26.2 | 30.3 | 33.2 | 42.7 | 49.0 | 55.8 | 53.7 | 44.9 | 45.2 |
MONTEZUMA | 31.0 | 34.7 | 39.5 | 39.9 | 43.0 | 45.0 | 47.1 | 43.4 | 45.1 |
MONTROSE | 22.9 | 28.9 | 30.9 | 35.2 | 35.9 | 39.9 | 40.5 | 39.3 | 38.4 |
MORGAN | 21.5 | 23.9 | 26.9 | 29.9 | 33.2 | 37.4 | 37.6 | 35.5 | 35.7 |
OTERO | 42.5 | 48.7 | 56.3 | 63.8 | 76.8 | 87.6 | 92.6 | 68.9 | 59.3 |
OURAY | 23.6 | 19.8 | 21.2 | 22.8 | 25.3 | 29.7 | 30.8 | 31.1 | 26.1 |
PARK | 6.4 | 6.0 | 6.9 | 6.5 | 8.2 | 8.6 | 8.3 | 7.1 | 4.0 |
PHILLIPS | 12.5 | 10.1 | 10.5 | 10.8 | 13.7 | 21.0 | 18.9 | 27.1 | 22.7 |
PITKIN | 15.3 | 14.3 | 13.9 | 15.7 | 13.1 | 13.4 | 13.3 | 13.2 | 12.9 |
PROWERS | 30.1 | 35.5 | 37.3 | 42.8 | 47.2 | 49.8 | 54.9 | 45.9 | 44.1 |
PUEBLO | 45.4 | 52.5 | 59.9 | 69.3 | 74.6 | 86.1 | 89.8 | 73.0 | 66.8 |
RIO BLANCO | 22.3 | 19.0 | 19.2 | 10.6 | 20.4 | 26.3 | 31.3 | 30.4 | 19.8 |
RIO GRANDE | 24.6 | 19.4 | 22.6 | 27.0 | 29.8 | 35.3 | 47.4 | 46.7 | 45.5 |
ROUTT | 27.3 | 28.7 | 27.5 | 29.0 | 29.9 | 30.1 | 28.7 | 27.1 | 25.5 |
SAGUACHE | 0.1 | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 |
SAN JUAN | 0.1 | NA | NA | NA | NA | NA | NA | NA | NA |
SAN MIGUEL | 9.5 | 9.8 | 10.3 | 10.0 | 11.8 | 11.0 | 10.8 | 10.6 | 10.2 |
SEDGWICK | 24.3 | 26.8 | 31.1 | 32.8 | 37.3 | 53.2 | 60.5 | 50.0 | 41.7 |
SUMMIT | 23.5 | 26.6 | 25.7 | 27.3 | 26.8 | 28.1 | 27.9 | 24.6 | 24.2 |
TELLER | 26.7 | 30.8 | 38.1 | 46.3 | 50.3 | 60.9 | 69.0 | 61.4 | 58.4 |
WASHINGTON | 8.9 | 8.2 | 8.5 | NA | NA | NA | NA | NA | NA |
WELD | 21.6 | 23.8 | 26.6 | 29.6 | 32.2 | 35.5 | 36.2 | 33.1 | 30.6 |
YUMA | 16.1 | 18.5 | 20.8 | 23.6 | 22.5 | 26.4 | 27.6 | 30.0 | 30.7 |
Step 8
This table is quite nice, but we can enhance it with one bonus step. Let’s examine how to add a sparkline. A sparkline is a small, simple chart or graph embedded within text or a table, designed to give a quick visual representation of data trends or variations. They are often used to show trends over time or to display small sets of data, such as monthly sales figures, daily temperatures, or other similar data frames. Sparklines are particularly useful because they can provide a visual summary of data without taking up much space. Here we’ll add a sparkline that shows the change in opioid pills per capita from 2006 to 2014 using a line graph. I will mark the highest score for the county with a red dot, and I will also provide shading so that the range in opioid pills per capita from the bottom of the y-axis to the sparkline for the county is easily observed.
For this table, we will exclude counties with missing data.
There are two new elements to the code:
First, we need to create a new column in this data frame that holds all these yearly values together in a compact form for each county. Essentially, we need to create a small time series for each county within a single column.
Here’s how we can achieve that:
Start with the Original Data (
co_wide
):Set Up for Row-wise Operations:
- Use rowwise() to tell R that we want to perform operations on each row (each county) individually rather than on the entire data frame at once.
Create a New Column with Time Series Data:
Within mutate(), we can create a new column called pills_per_capita_sparkline.
For each row (county), use
c_across(starts_with("pills_per_capita_in_"))
to gather all columns that start with “pills_per_capita_in_”. This function collects all the yearly values of pills per capita for that county.Wrap these collected values in
list()
, which stores them as a list within each cell of the new column. Now, each cell in the pills_per_capita_sparkline column contains a small list of values representing the pills per capita over the years for that county.
Return to Regular Data Frame:
- Use ungroup() to revert the data frame back to its normal state after the row-wise operation.
Second, we need to add the sparkline to the table using the gt_plt_sparkline() function.
Let’s break down the arguments to this function, full details for using this function are included here.
column = pills_per_capita_sparkline
specifies the column in the gt table where the sparklines should be added. pills_per_capita_sparkline is expected to be a list column where each cell contains a vector of numerical values representing the sparkline data (this is what we created in the first new element for this Step).type = "shaded"
defines the type of sparkline to be displayed."shaded"
indicates that the area under the line of the sparkline will be shaded.fig_dim = c(25, 25)
specifies the dimensions of the sparkline figures.c(25, 25)
sets the width and height of each sparkline to 25 pixels.palette = c("black", "transparent", "transparent", "#EC2049", "#D3D3D3")
defines the color palette for the sparkline. This should be a character string with 5 elements indicating the colors of various components. Order matters: palette = sparkline color, final value color, range color low, range color high, and ‘type’ color (e.g., shading or reference lines).- Sparkline color (
"black"
): This color is used to set the color of the line. - Final value color (
"transparent"
): By specifying"transparent"
, no final value is printed. - Range color low (
"transparent"
): This color is used for the lowest value point in the series. By specifying"transparent"
, this point is not visually highlighted. - Range color high (
"#EC2049"
): This color is used for the highest value point in the series — red is chosen here. - Type color (
"#D3D3D3
): This color is used for special features like shading or reference lines — grey is chosen here.
- Sparkline color (
same_limit = TRUE
indicates whether the same y-axis limits should be applied to all sparklines in the column.label = FALSE
specifies whether to include labels on the sparklines.FALSE
means no labels will be added to the sparklines, keeping them simple and uncluttered. Iflabel
were set toTRUE
, labels would be printed next to the sparklines, showing the final value of the series.
Find the second level header titled ## Add a sparkline
and copy and paste the code below into the code chunk. Press play on the code chunk to view the graph. Study the output, and then write a few sentences to describe what you see and your thoughts.
<-
co_wide_sparkline |>
co_wide rowwise() |>
mutate(
pills_per_capita_sparkline = list(c_across(starts_with("pills_per_capita_in_")))) |>
ungroup()
# Create the gt table
|>
co_wide_sparkline select(county, starts_with("pills_per_capita")) |>
drop_na() |>
gt() |>
tab_spanner(
label = "Opioid Pills Per Capita from 2006-2014",
columns = starts_with("pills_per_capita_in_")
|>
) cols_label(
county = "County",
pills_per_capita_in_2006 = "2006",
pills_per_capita_in_2007 = "2007",
pills_per_capita_in_2008 = "2008",
pills_per_capita_in_2009 = "2009",
pills_per_capita_in_2010 = "2010",
pills_per_capita_in_2011 = "2011",
pills_per_capita_in_2012 = "2012",
pills_per_capita_in_2013 = "2013",
pills_per_capita_in_2014 = "2014",
pills_per_capita_sparkline = "Sparkline"
|>
) gt_theme_538() |>
fmt_number(
columns = starts_with("pills_per_capita_in_"),
decimals = 1
|>
) gt_plt_sparkline(
column = pills_per_capita_sparkline,
type = "shaded",
fig_dim = c(25, 25),
palette = c("black", "transparent", "transparent", "#EC2049", "#D3D3D3"),
same_limit = TRUE,
label = FALSE
)
County |
Opioid Pills Per Capita from 2006-2014
|
Sparkline | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
ADAMS | 19.2 | 20.9 | 23.4 | 26.4 | 28.7 | 31.0 | 30.8 | 26.9 | 27.9 | |
ALAMOSA | 63.6 | 72.4 | 79.0 | 89.8 | 90.3 | 105.7 | 115.3 | 100.2 | 80.2 | |
ARAPAHOE | 20.5 | 22.8 | 24.6 | 26.9 | 27.6 | 29.0 | 29.0 | 27.3 | 27.2 | |
ARCHULETA | 13.5 | 14.9 | 15.5 | 18.4 | 18.4 | 19.4 | 22.1 | 24.0 | 25.4 | |
BACA | 17.6 | 20.6 | 20.3 | 16.8 | 21.3 | 26.8 | 21.6 | 23.1 | 27.3 | |
BENT | 14.2 | 19.0 | 22.9 | 23.6 | 27.8 | 35.8 | 37.5 | 30.1 | 28.5 | |
BOULDER | 20.7 | 23.4 | 25.7 | 25.4 | 27.7 | 28.4 | 27.4 | 25.3 | 23.3 | |
BROOMFIELD | 23.9 | 26.5 | 27.7 | 36.7 | 44.0 | 60.4 | 64.2 | 61.8 | 56.2 | |
CHAFFEE | 36.3 | 38.3 | 43.0 | 45.4 | 48.1 | 53.7 | 54.6 | 50.2 | 47.7 | |
CHEYENNE | 15.1 | 16.4 | 20.3 | 25.9 | 28.4 | 25.2 | 24.8 | 25.1 | 29.6 | |
CLEAR CREEK | 18.0 | 23.4 | 24.2 | 26.2 | 29.5 | 28.6 | 18.3 | 15.0 | 14.9 | |
CONEJOS | 33.3 | 34.5 | 31.9 | 31.1 | 30.9 | 35.5 | 42.8 | 41.2 | 28.0 | |
CROWLEY | 24.8 | 26.8 | 27.3 | 27.3 | 35.4 | 35.4 | 37.0 | 35.6 | 30.5 | |
DELTA | 36.0 | 42.9 | 50.1 | 49.6 | 46.0 | 48.7 | 49.1 | 42.4 | 43.6 | |
DENVER | 13.9 | 16.0 | 17.3 | 19.0 | 20.7 | 22.3 | 22.7 | 20.5 | 19.5 | |
DOUGLAS | 16.2 | 18.2 | 19.3 | 21.5 | 22.0 | 22.5 | 23.1 | 21.4 | 20.2 | |
EAGLE | 20.4 | 22.1 | 24.4 | 27.1 | 28.6 | 29.1 | 30.5 | 27.8 | 28.0 | |
EL PASO | 22.6 | 25.5 | 27.5 | 30.7 | 32.1 | 34.5 | 35.0 | 32.9 | 32.6 | |
ELBERT | 8.6 | 9.6 | 9.6 | 10.9 | 14.8 | 16.1 | 16.6 | 15.6 | 17.1 | |
FREMONT | 30.7 | 34.8 | 42.5 | 44.8 | 43.5 | 48.2 | 49.1 | 45.6 | 42.7 | |
GARFIELD | 29.1 | 34.0 | 35.0 | 36.4 | 35.8 | 37.2 | 36.3 | 32.2 | 32.1 | |
GILPIN | 6.8 | 7.0 | 4.5 | 6.8 | 8.2 | 15.1 | 11.5 | 4.1 | 1.7 | |
GRAND | 18.5 | 20.0 | 41.1 | 26.2 | 24.5 | 25.8 | 26.5 | 24.0 | 20.9 | |
GUNNISON | 15.3 | 16.0 | 18.1 | 20.4 | 21.6 | 22.9 | 24.0 | 21.8 | 19.9 | |
HINSDALE | 0.5 | 0.8 | 1.8 | 3.1 | 2.7 | 1.8 | 0.9 | 0.9 | 1.1 | |
HUERFANO | 41.6 | 37.9 | 44.2 | 45.8 | 55.9 | 64.4 | 64.4 | 56.9 | 43.1 | |
JEFFERSON | 30.8 | 34.9 | 37.6 | 38.7 | 40.0 | 42.6 | 44.2 | 41.0 | 39.5 | |
KIOWA | 23.2 | 33.8 | 39.6 | 37.2 | 40.2 | 42.2 | 44.8 | 47.6 | 53.1 | |
KIT CARSON | 12.8 | 15.0 | 17.0 | 18.6 | 17.9 | 16.4 | 18.6 | 17.2 | 16.8 | |
LA PLATA | 23.6 | 25.4 | 24.3 | 25.1 | 25.4 | 27.5 | 28.7 | 26.0 | 25.4 | |
LAKE | 23.1 | 24.0 | 23.3 | 24.2 | 30.7 | 41.1 | 36.9 | 30.7 | 27.2 | |
LARIMER | 24.7 | 27.7 | 29.8 | 31.4 | 33.4 | 36.1 | 36.2 | 34.0 | 33.6 | |
LAS ANIMAS | 54.2 | 37.9 | 44.0 | 45.6 | 50.1 | 51.4 | 56.0 | 62.4 | 73.8 | |
LINCOLN | 27.7 | 32.2 | 39.6 | 45.4 | 50.5 | 45.4 | 46.6 | 48.6 | 38.9 | |
LOGAN | 26.7 | 29.1 | 28.6 | 34.3 | 31.9 | 32.0 | 36.2 | 34.5 | 36.3 | |
MESA | 30.8 | 35.3 | 37.0 | 38.9 | 38.1 | 40.7 | 43.4 | 39.2 | 38.1 | |
MOFFAT | 26.2 | 30.3 | 33.2 | 42.7 | 49.0 | 55.8 | 53.7 | 44.9 | 45.2 | |
MONTEZUMA | 31.0 | 34.7 | 39.5 | 39.9 | 43.0 | 45.0 | 47.1 | 43.4 | 45.1 | |
MONTROSE | 22.9 | 28.9 | 30.9 | 35.2 | 35.9 | 39.9 | 40.5 | 39.3 | 38.4 | |
MORGAN | 21.5 | 23.9 | 26.9 | 29.9 | 33.2 | 37.4 | 37.6 | 35.5 | 35.7 | |
OTERO | 42.5 | 48.7 | 56.3 | 63.8 | 76.8 | 87.6 | 92.6 | 68.9 | 59.3 | |
OURAY | 23.6 | 19.8 | 21.2 | 22.8 | 25.3 | 29.7 | 30.8 | 31.1 | 26.1 | |
PARK | 6.4 | 6.0 | 6.9 | 6.5 | 8.2 | 8.6 | 8.3 | 7.1 | 4.0 | |
PHILLIPS | 12.5 | 10.1 | 10.5 | 10.8 | 13.7 | 21.0 | 18.9 | 27.1 | 22.7 | |
PITKIN | 15.3 | 14.3 | 13.9 | 15.7 | 13.1 | 13.4 | 13.3 | 13.2 | 12.9 | |
PROWERS | 30.1 | 35.5 | 37.3 | 42.8 | 47.2 | 49.8 | 54.9 | 45.9 | 44.1 | |
PUEBLO | 45.4 | 52.5 | 59.9 | 69.3 | 74.6 | 86.1 | 89.8 | 73.0 | 66.8 | |
RIO BLANCO | 22.3 | 19.0 | 19.2 | 10.6 | 20.4 | 26.3 | 31.3 | 30.4 | 19.8 | |
RIO GRANDE | 24.6 | 19.4 | 22.6 | 27.0 | 29.8 | 35.3 | 47.4 | 46.7 | 45.5 | |
ROUTT | 27.3 | 28.7 | 27.5 | 29.0 | 29.9 | 30.1 | 28.7 | 27.1 | 25.5 | |
SAGUACHE | 0.1 | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 | |
SAN MIGUEL | 9.5 | 9.8 | 10.3 | 10.0 | 11.8 | 11.0 | 10.8 | 10.6 | 10.2 | |
SEDGWICK | 24.3 | 26.8 | 31.1 | 32.8 | 37.3 | 53.2 | 60.5 | 50.0 | 41.7 | |
SUMMIT | 23.5 | 26.6 | 25.7 | 27.3 | 26.8 | 28.1 | 27.9 | 24.6 | 24.2 | |
TELLER | 26.7 | 30.8 | 38.1 | 46.3 | 50.3 | 60.9 | 69.0 | 61.4 | 58.4 | |
WELD | 21.6 | 23.8 | 26.6 | 29.6 | 32.2 | 35.5 | 36.2 | 33.1 | 30.6 | |
YUMA | 16.1 | 18.5 | 20.8 | 23.6 | 22.5 | 26.4 | 27.6 | 30.0 | 30.7 |
Step 9
Now that you’ve completed all tasks, to help ensure reproducibility, click the down arrow beside the Run button toward the top of your screen then click Restart R and Clear Output. Scroll through your notebook and see that all of the output is now gone. Now, click the down arrow beside the Run button again, then click Restart R and Run All Chunks. Scroll through the file and make sure that everything ran as you would expect. You will find a red bar on the side of a code chunk if an error has occurred. Taking this step ensures that all code chunks are running from top to bottom, in the intended sequence, and producing output that will be reproduced the next time you work on this project.
Now that all code chunks are working as you’d like, click Render. This will create an .html output of your report. Scroll through to make sure everything is correct. The .html output file will be saved along side the corresponding .qmd notebook file.
Step 10
Follow the directions on Canvas for the Apply and Practice Assignment entitled “ARCOS gt Table Apply and Practice Activity” to get credit for completing this assignment.